On the mean number of 2-torsion elements in the class groups, narrow class groups, and ideal groups of cubic orders and fields
نویسنده
چکیده
Given any family of cubic fields defined by local conditions at finitely many primes, we determine the mean number of 2-torsion elements in the class groups and narrow class groups of these cubic fields, when they are ordered by their absolute discriminants. For an order O in a cubic field, we study the three groups: Cl2(O), the group of ideal classes of O of order 2; Cl2 (O), the group of narrow ideal classes of O of order 2; and I2(O), the group of ideals of O of order 2. We prove that the mean value of the difference |Cl2(O)| − 14 |I2(O)| is always equal to 1, regardless of whether one averages over the maximal orders in real cubic fields, over all orders in real cubic fields, or indeed over any family of real cubic orders defined by local conditions. For the narrow class group, we prove that the average value of the difference |Cl2 (O)| − |I2(O)| is equal to 1 for any such family. Also, for any family of complex cubic orders defined by local conditions, we prove similarly that the mean value of the difference |Cl2(O)| − 1 2 |I2(O)| is always equal to 1, independent of the family. The determination of these mean numbers allows us to prove a number of further results as by-products. Most notably, we prove—in stark contrast to the case of quadratic fields—that: 1) a positive proportion of cubic fields have odd class number; 2) a positive proportion of real cubic fields have isomorphic 2-torsion in the class group and the narrow class group; and 3) a positive proportion of real cubic fields contain units of mixed real signature. We also show that a positive proportion of real cubic fields have narrow class group strictly larger than the class group, and thus a positive proportion of real cubic fields do not possess units of every possible real signature.
منابع مشابه
Error Estimates for the Davenport–heilbronn Theorems
We obtain the first known power-saving remainder terms for the theorems of Davenport and Heilbronn on the density of discriminants of cubic fields and the mean number of 3-torsion elements in the class groups of quadratic fields. In addition, we prove analogous error terms for the density of discriminants of quartic fields and the mean number of 2-torsion elements in the class groups of cubic f...
متن کاملThe mean number of 3-torsion elements in the class groups and ideal groups of quadratic orders
We determine the mean number of 3-torsion elements in the class groups of quadratic orders, where the quadratic orders are ordered by their absolute discriminants. Moreover, for a quadratic order O we distinguish between the two groups: Cl3(O), the group of ideal classes of order 3; and I3(O), the group of ideals of order 3. We determine the mean values of both |Cl3(O)| and |I3(O)|, as O ranges...
متن کاملReflection Principles and Bounds for Class Group Torsion
We introduce a new method to bound -torsion in class groups, combining analytic ideas with reflection principles. This gives, in particular, new bounds for the 3-torsion part of class groups in quadratic, cubic and quartic number fields, as well as bounds for certain families of higher degree fields and for higher . Conditionally on GRH, we obtain a nontrivial bound for -torsion in the class gr...
متن کاملExistence and Non-Existence of Torsion in Maximal Arithmetic Fuchsian Groups
In [1], Borel discussed discrete arithmetic groups arising from quaternion algebras over number fields with particular reference to arithmetic Kleinian and arithmetic Fuchsian groups. In these cases, he described, in each commensurability class, a class of groups which contains all maximal groups. Developing results on embedding commutative orders of the defining number field into maximal or Ei...
متن کاملResults on Engel Fuzzy Subgroups
In the classical group theory there is an open question: Is every torsion free n-Engel group (for n ≥ 4), nilpotent?. To answer the question, Traustason [11] showed that with some additional conditions all 4-Engel groups are locally nilpotent. Here, we gave some partial answer to this question on Engel fuzzy subgroups. We show that if μ is a normal 4-Engel fuzzy subgroup of ...
متن کامل